Blog

What was the ‘catastrophic implosion’ of the Titan submersible?

The four day-long search for the missing Titan submersible has come to a tragic end. Reports have confirmed the vessel was subject to a “catastrophic implosion” at some point during its voyage towards the Titanic shipwreck, which would have killed all five passengers instantly.

A debris field comprising “five different major pieces of debris” of various sections of the submersible was found on the sea floor by a remotely operated vehicle, about 500 metres away from the bow of the Titanic, officials said.

These findings are in line with previous news that an acoustic signature “consistent with an implosion” was detected by the US Navy on the same day the Titan began its descent.

The navy’s seabed sensors detected the signature in the general area the vessel was diving when it lost communication with its mothership. At the time the signature was considered “not definitive”.

What is a ‘catastrophic implosion’?

We can assume the implosion actually happened on the first day of the dive – but perhaps not exactly at the same time communication was lost with the mothership. But why did it happen?

Most, if not all, submersibles and submarines operating at depth have a pressure vessel made of a single metallic material with high yield strength. This is typically steel for relatively shallow depths (roughly less than 300m), or titanium for deeper depths.

A titanium or thick steel pressure vessel is usually a spherical shape that can withstand the crushing pressures you might expect at 3,800m – the depth at which the Titanic wreck lies.

The Titan, however, was different. It’s pressure vessel was made of a combination of titanium and composite carbon fibre. This is somewhat unusual from a structural engineering perspective since, in a deep diving context, titanium and carbon fibre are materials with vastly different properties.

See also  We may not be alone in the Universe. Should we reach out?

The four day-long search for the missing Titan submersible has come to a tragic end. Reports have confirmed the vessel was subject to a “catastrophic implosion” at some point during its voyage towards the Titanic shipwreck, which would have killed all five passengers instantly.

A debris field comprising “five different major pieces of debris” of various sections of the submersible was found on the sea floor by a remotely operated vehicle, about 500 metres away from the bow of the Titanic, officials said.

These findings are in line with previous news that an acoustic signature “consistent with an implosion” was detected by the US Navy on the same day the Titan began its descent.

The navy’s seabed sensors detected the signature in the general area the vessel was diving when it lost communication with its mothership. At the time the signature was considered “not definitive”.

What is a ‘catastrophic implosion’?

We can assume the implosion actually happened on the first day of the dive – but perhaps not exactly at the same time communication was lost with the mothership. But why did it happen?

Most, if not all, submersibles and submarines operating at depth have a pressure vessel made of a single metallic material with high yield strength. This is typically steel for relatively shallow depths (roughly less than 300m), or titanium for deeper depths.

A titanium or thick steel pressure vessel is usually a spherical shape that can withstand the crushing pressures you might expect at 3,800m – the depth at which the Titanic wreck lies.

The Titan, however, was different. It’s pressure vessel was made of a combination of titanium and composite carbon fibre. This is somewhat unusual from a structural engineering perspective since, in a deep diving context, titanium and carbon fibre are materials with vastly different properties.

See also  Carbon may not be the only basis for life. Look for silicon, too

Eric Fusil, Associate Professor, School of Electrical and Mechanical Engineering, University of Adelaide

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Greetings, explorer! We thank our supporters from the bottom of our hearts for their generous donations that keep anomalien.com alive. If you’d like to join the cause and help us continue to deliver amazing articles, please consider making a donation. Let’s keep the 👽 smiling!Follow us on Instagram, Twitter and Telegram for interesting and mysterious bonus content!



Source link

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button